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Abstract
Finding new uses for existing drugs, or drug repositioning, has been used as a strategy for decades to get drugs to
more patients. As the ability to measure molecules in high-throughput ways has improved over the past decade,
it is logical that such data might be useful for enabling drug repositioning through computational methods. Many
computational predictions for new indications have been borne out in cellular model systems, though extensive
animal model and clinical trial-based validation are still pending. In this review, we show that computational methods
for drug repositioning can be classified in two axes: drug based, where discovery initiates from the chemical per-
spective, or disease based, where discovery initiates from the clinical perspective of disease or its pathology.
Newer algorithms for computational drug repositioning will likely span these two axes, will take advantage of
newer types of molecular measurements, and will certainly play a role in reducing the global burden of disease.
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The number of new drugs approved per dollar spent

or pharmaceutical research and development prod-

uctivity has significantly declined in recent decades

[1]. By conservative estimates, it now takes �15

years [2] and $800 million to $1 billion to bring a

single drug to market [3]. There are two major rea-

sons for this decline in the total number of safe and

effective new drugs reaching the market. The first is

that prevalent drug development strategies within

pharmaceutical companies remain conservative, typ-

ically oriented on discovery of a new therapeutic

target combined with a search for a novel therapeutic

compound that modulates the activity of the identi-

fied target. This is followed by a slow, costly and

risky process of experimental and clinical validation.

The second major reason for reduced productivity

is the lack of systematic evaluation of additional in-

dications that each drug can target, both during

the drug’s development phase and subsequent to its

arrival on the market. Some of the most profitable

and successful pharmaceuticals did not begin

development for their current indications, but instead

were re-purposed or repositioned for new uses [4].

Accidental discovery, unintended side effects or ob-

vious follow on indications have led to new uses of

such drugs. Classic examples include Minoxidil (ori-

ginally tested for hypertension; now indicated for

hair loss), Viagra (originally tested for angina; now

indicated for erectile dysfunction and pulmonary

hypertension), Avastin (originally indicated for meta-

static colon cancer and nonsmall-cell lung cancer;

later approved for metastatic breast cancer) and

Rituxan (originally indicated for non-Hodgkin’s

Lymphoma; later approved for chronic lymphocytic

leukemia and rheumatoid arthritis).

Revenues generated by repositioned drugs can

exceed billions: sales of thalidomide, repositioned

for multiple myeloma, reached US $271 million in

2003 alone [5]; sildenafil, repositioned for erectile

dysfunction, had annual sales of US $1.88 billion in

2003 [4]. While the revenues generated by repos-

itioned drugs have been substantial, the real incentive
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for repositioning is the clear benefit for patients.

For example, thalidomide’s antiangiogenic properties

have provided therapeutic benefits to multiple mye-

loma patients, who otherwise had few treatment op-

tions for their disease, while the central dopamine

agonist properties of bromocriptine recent led to its

approval in the USA for a new indication of Type 2

diabetes [6].

Drug repositioning or repurposing (i.e. finding a

new use for an existing drug) can provide solutions

to the problems facing pharmaceutical companies.

Such efforts have spanned the spectrum from trad-

itionally blind screening methods of chemical

libraries against specific cell lines [7] or cellular or-

ganisms [8, 9], to serial testing of animal models [10],

to the newer data-driven approaches involving com-

putational methods. The latter category typically

takes advantage of the fact that a single molecule

can act on multiple targets and could be beneficial

to indications where the additional targets are rele-

vant (the known compound-new target approach).

In fact, there is strong evidence that such off-target

interactions, or polypharmacology, are common

among many approved drugs compounds [11].

Additionally, repositioning efforts also leverage the

fact that mechanisms and targets are shared between

diseases or biological processes enabling drugs that

work on a target in one work for the other

(known targets in a new indication). Drug repos-

itioning has several advantages compared to a trad-

itional approach to the development of a drug

de novo.
The drug development cycle for a repositioned

drug can be as short as 3–12 years compared to the

traditional 10–17 years required to bring a new

chemical entity to market [12]. This is due to the

fact that several steps of the drug development pipe-

line can be eliminated during repurposing efforts.

However, the discovery of a new use of a drug for

a new condition can be a haphazard process, as illu-

strated by the examples given above, where new

indications were found through side effects, or

through exploiting useful properties of these drugs

[13], demonstrated in the utility of arsenic for acute

promyelocytic leukemia [14], amphotericin B for

leishmaniasis [15] and thalidomide for multiple mye-

loma [16]. While physicians, pharmaceutical and

biotechnology companies have manual methods

and prior knowledge that enable repositioning of

drugs through clinical trials, these occurrences are

often serendipitous and rare. One challenge in drug

repositioning, therefore, lies in predicting and choos-

ing new therapeutic indications to prospectively test

for a drug of interest. This review will focus on com-

putational approaches for guiding and selecting new

indications for drugs.

COMPUTATIONAL
REPOSITIONING STRATEGIES
Many computational strategies for drug reposition-

ing have been published. One way to classify these

methods is by categorizing them as either ‘drug

based’, where discovery of repositioning opportu-

nities initiates from the chemical or pharmaceutical

perspective, or ‘disease based’, where discovery ini-

tiates from the perspective of disease management,

symptomatology or pathology (Figure 1). Drug-

based approaches might be preferred, if there is inter-

est or expertise in modeling or understanding more

precise pharmacological properties leading to repur-

posing opportunities, or if rich pharmacological or

chemical data for drugs is available. Disease-based

approaches may be preferred to overcome missing

knowledge in the pharmacology of a drug (e.g.

unknown or additional targets), or if repositioning

efforts are to be focused on a specific disease or thera-

peutic category. While each of these approaches

present unique informatics challenges, successful re-

positioning strategies often incorporate elements

from both drug- and disease-based methods. Here,

we discuss several specific examples of computational

approaches developed from these perspectives.

DRUG-BASED COMPUTATIONAL
APPROACHES
Chemical similarity
The structure and chemical properties of a drug

compound itself are evidently associated with its

ultimate effective use as a therapy. It is, therefore,

possible to explore repositioning opportunities for a

drug compounds based on shared chemical charac-

teristics. The rational basis for this approach is rooted

in known quantitative relationships between chem-

ical structures and biochemical activity (QSAR).

Although similar structures do not always behave

the same in biological systems, the degrees of simi-

larity that exist can be exploited using computational

approaches for drug repositioning. The computa-

tional basis of chemical similarity approaches is to

extract a set of chemical features for each drug in a
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set of drugs, and then to relate the drugs directly to

each other by clustering or constructing networks

based on the extracted features [17]. Drug repos-

itioning opportunities can then be inferred by

simple chemical association, or by looking for

particular biological features, such as known drug

targets, enriched in the resulting relationships.

As an example, to discover novel targets for meta-

botropic glutamate receptor (mGluR) antagonists,

Noeske et al. [18] extracted standardized pharmaco-

phore descriptors for a collection of known mGluR

and also for a broader set of known drug compounds

with diverse known drug targets. These descriptors

were then used to project the compounds on to a

self-organizing map (SOM), which revealed distinct

subclusters of mGluR antagonists, and also overlap-

ping localization with ligands known to bind to his-

tamine (H1R), dopamine (D2R) and several other

targets. These predicted interactions were subse-

quently confirmed by experimental validation,

which showed weak but significant binding affinities

between mGluR antagonists predicted off-targets.

Keiser et al. [11] took an integrated chemical simi-

larity approach to drug repositioning that incorpo-

rated both the structural similarity between drug

compounds, as well as knowledge of established

compound-target relationships. In this approach,

drug targets were represented by the set of ligands

which were known to bind to them. To evaluate a

possible novel association between an established

drug (query compound) and an off-target, a score

was derived by calculating the sum of the structural

similarity between the query compound and each

member of the set of ligands known to bind to the

target. The pair-wise similarity score was computed

as the Tanimoto coefficient, representing the struc-

tural similarity between two compounds based on

2D chemical fingerprint descriptors of their chemical

structure. A statistical model based on the extreme

value distribution was then used to determine a sig-

nificant score, and scores surpassing the significance

threshold indicated a probable association between

the query drug and the target. Several of the

off-target interactions predicted by this method

were experimentally confirmed by binding assays,

and a predicted interaction between N,N-dimethyl-

tryptamine and serotonergic receptors was confirmed

in a knockout mouse model. Other sources of

chemical information can also be used to make asso-

ciations [19].

Limitations of the chemical similarity approach for

drug repositioning largely stem from the fact that

Figure 1: Published drug repositioning strategies described in this review are organized according to their primary
mode of inference.The dashed arrows connect high-level informational aspects of drugs and diseases with the meth-
ods that incorporate these types of information in their approach. Methods are generally categorized as focusing
largely on either (i) ‘Direct’ inference, where established or directly measured biomolecular or chemical properties
are used to infer therapeutic relationships between drugs and diseases, (ii) ‘Indirect’ inference, where related or
higher level data or representations of drugs and diseases is used to infer therapeutic relationships between drugs
and diseases or (iii) ‘Simulation’, where therapeutic interactions are inferred through simulation of interactions be-
tween drugs and diseases rather than through direct or indirect measurement of their salient properties.We pre-
dict that newer methods will move toward integrating multiple forms of therapeutic inference incorporating many
forms of both drug- and disease-based data and knowledge to enable the discovery of new uses for drugsças
some of the methods described in this review have taken steps toward.
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many structures [20] and other chemical properties of

known drug compounds contain errors, or are with-

held as proprietary information. Furthermore, many

physiological effects cannot be predicted by chemical

properties alone, because drugs undergo complex,

and largely uncharacterized, metabolic transform-

ations and other pharmacokinetic transformations as

they are metabolized and physiologically distributed.

Molecular activity similarity
Another way in which drugs can be related to other

drugs and disease states for the purpose of reposition-

ing is by computational assessment of similarities

in molecular profiles. When a pharmacologically

active compound is exposed to a biological system,

the result is a perturbation of the biological system

through the compound’s mechanism of action

(MOA). Although the precise MOA is not well-

understood for many approved compounds, high-

throughput molecular measurement techniques,

such as gene expression microarrays, can be used to

measure and represent the total molecular activity of

a compound in a biological system. In this way, it

becomes possible to construct a ‘signature’ of the

molecular activity of a drug compound acting in a

biological system. These signatures of molecular ac-

tivity can then be compared to establish therapeutic

relationships between drugs and diseases even in cases

when a drug’s MOA or even primary target is

unknown.

One of the most comprehensive and systematic

approaches toward leveraging the molecular activity

approach for drug repositioning is the Connectivity

Map project [21]. The Connectivity Map currently

provides a reference collection of gene expression

based molecular activity profiles for 1309 com-

pounds, which were obtained by systematically

exposing the compounds to a few key cancer cell

lines and measuring the genome-wide transcriptional

response. The molecular activity profile of each drug

in the reference collection contains, for each gene

measured, a rank-based measure of the change in

transcriptional activity after exposure to the drug

compound. These profiles can be used as the basis

of comparison to connect drugs to other drugs and

diseases based on shared molecular activity.

As one example of this utility, Iorio et al. [23]

computed the pair-wise similarity between the mo-

lecular activity signatures of all drug compounds rep-

resented in the Connectivity Map using a novel,

rank-based metric based on Gene Set Enrichment

Analysis (GSEA)[22]. Drugs were then organized

into a network using the resulting similarity scores,

and a network partitioning strategy based on ‘affinity

propagation’ [24] was applied to cluster the network

into coherent ‘communities’ of drugs. The resulting

drug communities comprised drugs with similar

MOAs, which often shared canonical targets and

pathways. Through this approach, repositioning

opportunities are revealed by co-location of drugs

within the network clusters, which suggests a

shared molecular activity with other drugs in the

cluster. The authors used this approach to infer pre-

viously unknown cellular autophagy activity for

the rho-kinase inhibitor Fasudil, which was further

supported by experimental validation of predicted

target levels.

Another way the Connectivity Map could be used

for drug repositioning is to directly compare the mo-

lecular activity signatures of drugs with those of a

disease state. Since disease pathology can similarly

be viewed as a perturbation of a biological state,

the same approach can be applied to measure the

genome-wide transcriptional changes in the disease

condition and generate a signature or profile of its

molecular activity. The resulting disease signature

provides a common basis by which the molecular

activity of a disease can be compared to the molecu-

lar activity of a drug to identify novel therapeutic

opportunities. Wei et al. [25] successfully applied

this approach to identify the mTOR inhibitor rapa-

mycin as a modulator of glucocorticoid (GC) resist-

ance in acute lymphoblastic leukemia (ALL). They

first derived a gene expression signature GC resist-

ance by comparing gene expression profiles of

GC-resistant and GC-sensitive ALL samples. They

then compared the GC-resistance signature with

the drug compound molecular profiles in the

Connectivity Map using the nonparametric GSEA

method [22], which revealed a significant enrich-

ment of concordant gene expression changes be-

tween gene transcripts the GC-resistance signature

and those in the molecular activity profile of

rapamycin.

Strategies for drug repositioning based on molecu-

lar activity similarity are not limited to analysis of

transcriptional response, and may incorporate any

number of high-dimensional molecular characteriza-

tions of drug effect; such as chemical screening assays

or high-throughput gene knockout assays. Chen

et al. [26] used data from the PubChem bioassay re-

pository to create molecular activity profiles for
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represented drug compounds, which were organized

into similarity networks based on their bioassay ac-

tivity profiles. The resulting bioassay network was

then mapped on to biological networks constructed

from metabolic pathways and protein–protein inter-

actions using a bipartite mapping scheme that con-

sidered the sequence similarity between protein

targets in the assay nodes and the protein sequence

nodes in the biological network. The resulting map-

pings between the PubChem bioassay and biological

networks provide representation and interpretation

of the biological activity of compounds within the

context of biological systems, with the goal of under-

standing how the compounds might perturb a bio-

logical system toward efficacy or adverse effects.

The primary limitation of drug repositioning stra-

tegies based on molecular activity similarity is their

heavy reliance on the quality and assumptions of the

means used to derive molecular activity profiles. For

example, the Connectivity Map is derived by expos-

ing the whole drug compound to isolated cell lines,

which may not accurately reflect the biological ac-

tivity of the drug in a complete physiological system.

Many drugs undergo chemical transformations after

they are metabolized in vivo, and in fact the drug

metabolites often provide the eventual therapeutic

effect. Furthermore, the pathology of many disease

conditions, including metabolic diseases such as Type

2 diabetes, spans multiple tissues and organ systems;

therefore, it might be difficult to represent and com-

pare such diseases on the basis of a single molecular

activity signature.

Molecular docking
Molecular docking comprises a set of computational

methods that aimed at discovering novel relation-

ships between chemical ligands and targets through

use of simulation and modeling of their direct phys-

ical interaction [27]. Molecular docking methods can

enable drug repositioning by attempting to predict

physical interactions between existing compounds

and novel therapeutic targets. If a drug is predicted

to physically interact with a previously unknown

target, then the drug might be considered as a pos-

sible repositioning candidate for disease conditions in

which the predicted target is known or suspected to

play a role, or perturb the molecular pathology of the

disease. Molecular docking approaches can be used

on a target-by-target basis to look for repositioning

strategies for a particular target of interest, or to es-

tablish networks of ligand–target interactions to

explore drug repositioning opportunities across sys-

tems of predicted drug–target interactions.

Zahler et al. [28] describe a virtual ‘inverse’ screen-

ing approach to identify novel targets of the kinase

inhibitor indirubin. Beginning with indirubin as a

chemical of interest, they sequentially screened its

ligand against a database of kinase receptor structures

through molecular docking to discover and validate a

novel interaction between an indirubin derivative

and PDK1. Kinnings et al. [29] employed molecular

docking in a chemical systems biology approach to

reposition Entacapone, a catechol-O-methyl trans-

ferase (COMT) inhibitor used to treat Parkinson’s

disease, as a treatment for multi-drug resistant

(MDR) tuberculosis. They began by extracting

target-binding sites for approved drugs from the

3D structures of their known targets, and then per-

formed a computational search to identify putative

off-target proteins with similar ligand binding sites.

They then used molecular docking to evaluate can-

didates from the binding site similarity search for

physical interaction with the associated drug ligand,

retaining predicted interactions as putative novel

off-targets of the drug. Focusing on off-target pre-

dictions for the protein enoyl–acyl carrier protein

reductase (InhA), which is involved in synthesis of

the bacterial cell wall, they used this approach to

identify and validate antagonistic ligands of a binding

site extracted from COMT. Taking this approach

further, Chang et al. [30] have recently shown that

structure-based predictions can also be filtered based

on other data- and knowledge sources, such as meta-

bolic networks, tissue localization and gene expres-

sion patterns.

There are some potential limitations to the use of

molecular docking in drug repositioning. Foremost,

the approach typically requires that the 3D structure

of both the chemical ligand and the protein target are

well resolved. At present, the structures of many

physiologically important proteins are not fully

resolved; including whole families of G-protein

coupled receptors (GPCRs), which are favored as

drug targets for many approved drugs. Additionally,

the results of molecular docking are known to incur

high false-positive rates, due to errors in resolved

protein structures and incomplete modeling of

atomic and molecular interactions [31]. Despite

these challenges, it is clear that there are tens of thou-

sands of drugs waiting for an indication with avail-

able information [32], and multiple drug-based

approaches are likely to be fruitful.
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DISEASE-BASED COMPUTATIONAL
APPROACHES
Associative indication transfer
One approach to leveraging disease-based informa-

tion for drug repurposing is to utilize knowledge of

drug indications for disease. Chiang et al. [33] used a

‘guilt by association’ approach to discover novel drug

indications based on the similarity of their efficacious

indications. Diseases were deemed as similar to each

other if they already shared a significant number of

therapies. Across each pair of similar diseases, those

remaining drugs that were currently used against

only one of the pair were then considered as logical

candidates as drugs for the other disease in the pair.

Novel drug-indication associations could then be

inferred by associating drugs with novel indications

by expanding from simple pairs into network

clusters.

However, repositioning strategies based on the as-

sociative transfer of indications are limited by the

varied and complex relationships that associate a

drug as an indication for a particular disease condi-

tion. For example, many drugs are indicated as pal-

liative treatments for various cancers, which are

difficult to discern from those drugs indicated as pri-

mary chemotherapeutic treatments. At present, there

is no comprehensive, systematic representation of

known drug indications that would enable such

fine-scale delineation of types of drug–disease rela-

tionships; however, efforts to construct systematized

drug ontologies and other resources are underway

[34].

Shared molecular pathology
An implicit assumption in drug repositioning is that

a drug can be repositioned from one indication

to another because the two indications share some

aspect of underlying molecular pathophysiology that

is responsive to the therapeutic effect of a drug.

Therefore, computational strategies for assessing mo-

lecular relationships between distinct disease pathol-

ogies can serve as a means for drug repositioning.

In this approach, repositioning opportunities exist

when diseases are found to exhibit similarity at the

molecular level (even without similarity at the

phenotypic or clinical level), suggesting that drugs

might be shared among diseases with high degrees

of molecular similarity.

Hu and Agarwal [35] created a disease-similarity

network using publicly available gene expression

profiles, and integrated this network with molecular

profiles and knowledge of drugs and drug targets to

infer drug repositioning opportunities and suggest

molecular targets and mechanisms underlying drug

effects. They began by identifying and acquiring

disease-related experiments in the NCBI Gene

Expression Omnibus (GEO) and computed differen-

tial gene expression profiles between classes repre-

sented in the experiments (e.g. affected versus

healthy). The resulting disease profiles were com-

pared using a correlation-based similarity metric

and organized into a network to reveal novel disease

relationships based on genome-wide transcriptional

response. This network was further integrated

with drug molecular profiles derived from the

Connectivity Map to create a drug–disease network

where clusters of drugs and diseases suggest shared

drug mechanisms and molecular disease pathology.

Similar efforts using the genetics and known path-

ways involved in these diseases have also been suc-

cessful [36, 37].

Suthram et al. [38] integrated a larger set of mo-

lecular profiles of diseases with protein–protein inter-

action (PPI) data, to infer protein functional modules

and networks that were shared among many diseases.

Using a human PPI that was organized into ‘mod-

ules’ of functionally interacting proteins, a statistical

approach was used to evaluate the molecular signa-

tures of diseases for gene functional module activity,

whereby the module activity was determined as the

mean normalized transcriptional activity of its com-

ponent genes in the disease molecular profile. A net-

work of disease–disease relationships was then

formed on the basis of functional module activity

shared between diseases. Within these networks

that she discovered as common across diseases were

multiple known drug targets. Curiously, drugs that

hit these targets were already known to be effective

against multiple indications, compared to drugs hit-

ting other targets in other networks, a property she

called pluripotent drug targets. This work also lever-

aged publicly available experiments from GEO to

create molecular profiles of disease, which were re-

stricted to include only those experiments comparing

disease affected tissues to healthy controls to create

standardized disease signatures.

The limitations of using shared molecular path-

ology approaches are similar to those implicit in

the shared molecular activity approach for drug-

based repositioning. The utility of these approaches

will be limited by the ability measure and represent

the molecular pathology underlying the disease.
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As disease pathology often incorporates a multitude

of molecular entities, tissues and organ systems, it

can be quite challenging to model the molecular

state of diseases such that they can be easily com-

pared using computational approaches. Promising

network-based approaches to overcoming the chal-

lenge of modeling and comparing complex molecu-

lar disease states has been proposed by Schadt et al.
[39–41].

Side effect similarity
Another way to connect drugs to clinical effects for

the drug repurposing is through the side effects of

drugs, which represent unintended consequences of

the drug action. Side effects provide a means to con-

nect drugs to diseases, because they encode the

physiological consequence of a drug compound’s

biological activity. Furthermore, the phenotypic ex-

pression of a side effect can be similar to that of a

disease, implying that the underlying pathways or

physiological systems may be similarly perturbed by

both the drug and the disease condition. This pro-

vides the basis to relate drugs to other drugs or dis-

eases by side effect profiles, even in cases where the

precise pharmacological mechanism facilitating the

side effect is unknown.

Campillos et al. [42] performed a systematic ana-

lysis to identify novel drug–target relationships for

746 approved drugs using a side effect similarity ap-

proach. For each drug, they extracted side effects

from the drug package insert and mapped them to

standardized medical symptom terms using the

Unified Medical Language System (UMLS)

Metathesaurus [43]. The side effect terms were

given weights using a scheme that incorporated

their frequency and correlation across all drugs in

the set, and similarity scores were computed between

a pair of drugs based on the sum of the respective

weights of their common side effects. A randomiza-

tion approach was used to establish the significance

of the side effect similarity scores, which were further

incorporated with a measure of the structural simi-

larity between drugs to increase predictive power.

The resulting drug–drug relationships were shown

to recapitulate many shared target relationships be-

tween drugs, and several predicted novel drug–target

relationships were experimentally confirmed.

The most apparent limitation of the side effect

similarity approach is the necessity for having

well-defined side effect profiles for a drug. Despite

rigorous preclinical assessment, the side effect profile

for a newly approved drug may only be fully dis-

cerned after years of clinical use and postmarket sur-

veillance. In addition, the assumption that similar

phenotypic expression of a drug side effect implies

a common pathophysiological basis may not always

hold. For example, the side effect of ‘hair loss’ can

arise when a drug interferes with hormonal systems

that regulate hair growth, or alternatively disrupt

immune function in a manner that causes harm to

the cells comprising the hair follicle.

CONCLUSIONS
With continued difficulties in accelerating the

growth rate of new chemical entities reaching regu-

latory approval, it appears certain that the strategy of

repositioning of existing pharmaceuticals will only

gain in acceptance. Computational methods for

repositioning are probably the most efficient way

to yield novel indications for these drugs, and

the power of these methods will only increase as

more molecular measurements of increasingly differ-

ent types become available. However, in general,

extensive animal model and clinical trials have not

yet been launched based on these computational

predictions; these studies are now needed to

fully demonstrate the utility of computational drug

repositioning.

Regardless of whether computational methods

become the standard for drug repositioning, it is

clear that many other undiscovered uses of drugs

do exist. Finding these new uses is an important

and necessary step towards reducing the burden of

disease.

Key Points

� There are likelymany undiscovereduses for existing drugs.
� Dozens of computational methods have been published that

enable the discovery of new uses for established drugs.
� Computational methods for drug repositioning can be classified

in two axes: drug- or disease-based.
� Using computational methods to find new uses for drugs is an

important and necessary step toward reducing the burden of
disease.
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